3.291 \(\int \frac{x \sqrt{c+d x^3}}{8 c-d x^3} \, dx\)

Optimal. Leaf size=601 \[ -\frac{2 \sqrt{2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt{\frac{c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{d} x+\left (1-\sqrt{3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt{3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt{\frac{\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt{c+d x^3}}+\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt{\frac{c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\sin ^{-1}\left (\frac{\sqrt [3]{d} x+\left (1-\sqrt{3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt{3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt{3}\right )}{d^{2/3} \sqrt{\frac{\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt{c+d x^3}}-\frac{2 \sqrt{c+d x^3}}{d^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac{\sqrt{3} \sqrt [6]{c} \tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt{c+d x^3}}\right )}{2 d^{2/3}}+\frac{\sqrt [6]{c} \tanh ^{-1}\left (\frac{\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt{c+d x^3}}\right )}{2 d^{2/3}}-\frac{\sqrt [6]{c} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{2 d^{2/3}} \]

[Out]

(-2*Sqrt[c + d*x^3])/(d^(2/3)*((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) - (Sqrt[3]*c^
(1/6)*ArcTan[(Sqrt[3]*c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(2*d^(2/3
)) + (c^(1/6)*ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/(2*d
^(2/3)) - (c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(2*d^(2/3)) + (3^(1/4)*
Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*
x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticE[ArcSin[((1 - S
qrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3
]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/
3)*x)^2]*Sqrt[c + d*x^3]) - (2*Sqrt[2]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/
3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Ell
ipticF[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/
3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/(
(1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3])

_______________________________________________________________________________________

Rubi [A]  time = 1.20331, antiderivative size = 601, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 12, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.48 \[ -\frac{2 \sqrt{2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt{\frac{c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\sqrt [3]{d} x+\left (1-\sqrt{3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt{3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt{\frac{\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt{c+d x^3}}+\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt{\frac{c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\sin ^{-1}\left (\frac{\sqrt [3]{d} x+\left (1-\sqrt{3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt{3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt{3}\right )}{d^{2/3} \sqrt{\frac{\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt{c+d x^3}}-\frac{2 \sqrt{c+d x^3}}{d^{2/3} \left (\left (1+\sqrt{3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac{\sqrt{3} \sqrt [6]{c} \tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt{c+d x^3}}\right )}{2 d^{2/3}}+\frac{\sqrt [6]{c} \tanh ^{-1}\left (\frac{\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt{c+d x^3}}\right )}{2 d^{2/3}}-\frac{\sqrt [6]{c} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{2 d^{2/3}} \]

Antiderivative was successfully verified.

[In]  Int[(x*Sqrt[c + d*x^3])/(8*c - d*x^3),x]

[Out]

(-2*Sqrt[c + d*x^3])/(d^(2/3)*((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) - (Sqrt[3]*c^
(1/6)*ArcTan[(Sqrt[3]*c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/(2*d^(2/3
)) + (c^(1/6)*ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/(2*d
^(2/3)) - (c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(2*d^(2/3)) + (3^(1/4)*
Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*
x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticE[ArcSin[((1 - S
qrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3
]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/
3)*x)^2]*Sqrt[c + d*x^3]) - (2*Sqrt[2]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/
3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Ell
ipticF[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/
3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/(
(1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 20.4555, size = 51, normalized size = 0.08 \[ \frac{x^{2} \sqrt{c + d x^{3}} \operatorname{appellf_{1}}{\left (\frac{2}{3},- \frac{1}{2},1,\frac{5}{3},- \frac{d x^{3}}{c},\frac{d x^{3}}{8 c} \right )}}{16 c \sqrt{1 + \frac{d x^{3}}{c}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x*(d*x**3+c)**(1/2)/(-d*x**3+8*c),x)

[Out]

x**2*sqrt(c + d*x**3)*appellf1(2/3, -1/2, 1, 5/3, -d*x**3/c, d*x**3/(8*c))/(16*c
*sqrt(1 + d*x**3/c))

_______________________________________________________________________________________

Mathematica [C]  time = 0.313982, size = 168, normalized size = 0.28 \[ \frac{20 c x^2 \sqrt{c+d x^3} F_1\left (\frac{2}{3};-\frac{1}{2},1;\frac{5}{3};-\frac{d x^3}{c},\frac{d x^3}{8 c}\right )}{\left (8 c-d x^3\right ) \left (3 d x^3 \left (F_1\left (\frac{5}{3};-\frac{1}{2},2;\frac{8}{3};-\frac{d x^3}{c},\frac{d x^3}{8 c}\right )+4 F_1\left (\frac{5}{3};\frac{1}{2},1;\frac{8}{3};-\frac{d x^3}{c},\frac{d x^3}{8 c}\right )\right )+40 c F_1\left (\frac{2}{3};-\frac{1}{2},1;\frac{5}{3};-\frac{d x^3}{c},\frac{d x^3}{8 c}\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(x*Sqrt[c + d*x^3])/(8*c - d*x^3),x]

[Out]

(20*c*x^2*Sqrt[c + d*x^3]*AppellF1[2/3, -1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c
)])/((8*c - d*x^3)*(40*c*AppellF1[2/3, -1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c)
] + 3*d*x^3*(AppellF1[5/3, -1/2, 2, 8/3, -((d*x^3)/c), (d*x^3)/(8*c)] + 4*Appell
F1[5/3, 1/2, 1, 8/3, -((d*x^3)/c), (d*x^3)/(8*c)])))

_______________________________________________________________________________________

Maple [C]  time = 0.01, size = 848, normalized size = 1.4 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x)

[Out]

2/3*I*3^(1/2)/d*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^
2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^
2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*
I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3
/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+
1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(
1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)
^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1
/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d
*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)))-
1/3*I/d^3*2^(1/2)*sum(1/_alpha*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*
d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*
(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-
c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^
(1/3)*_alpha*3^(1/2)*d+2*_alpha^2*d^2-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(1/3)*_a
lpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3
^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I*_alpha^2*(
-c*d^2)^(1/3)*3^(1/2)*d-I*_alpha*(-c*d^2)^(2/3)*3^(1/2)+I*3^(1/2)*c*d-3*_alpha*(
-c*d^2)^(2/3)-3*c*d)/c,(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*
3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ -\int \frac{\sqrt{d x^{3} + c} x}{d x^{3} - 8 \, c}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-sqrt(d*x^3 + c)*x/(d*x^3 - 8*c),x, algorithm="maxima")

[Out]

-integrate(sqrt(d*x^3 + c)*x/(d*x^3 - 8*c), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (-\frac{\sqrt{d x^{3} + c} x}{d x^{3} - 8 \, c}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-sqrt(d*x^3 + c)*x/(d*x^3 - 8*c),x, algorithm="fricas")

[Out]

integral(-sqrt(d*x^3 + c)*x/(d*x^3 - 8*c), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ - \int \frac{x \sqrt{c + d x^{3}}}{- 8 c + d x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x*(d*x**3+c)**(1/2)/(-d*x**3+8*c),x)

[Out]

-Integral(x*sqrt(c + d*x**3)/(-8*c + d*x**3), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int -\frac{\sqrt{d x^{3} + c} x}{d x^{3} - 8 \, c}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-sqrt(d*x^3 + c)*x/(d*x^3 - 8*c),x, algorithm="giac")

[Out]

integrate(-sqrt(d*x^3 + c)*x/(d*x^3 - 8*c), x)